Regularity estimates for fully non linear elliptic equations which are asymptotically convex

نویسندگان

  • Luis Silvestre
  • Eduardo V. Teixeira
چکیده

In this paper we deliver improved C regularity estimates for solutions to fully nonlinear equations F (Du) = 0, based on asymptotic properties inherited from its recession function F (M) := lim μ→0 μF (μ−1M). MSC: 35B65, 35J70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations

In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...

متن کامل

Second Order Estimates and Regularity for Fully Nonlinear Elliptic Equations on Riemannian Manifolds

We derive a priori second order estimates for solutions of a class of fully nonlinear elliptic equations on Riemannian manifolds under structure conditions which are close to optimal. We treat both equations on closed manifolds, and the Dirichlet problem on manifolds with boundary without any geometric restrictions to the boundary. These estimates yield regularity and existence results some of ...

متن کامل

ar X iv : 0 70 8 . 36 55 v 1 [ m at h . A P ] 2 7 A ug 2 00 7 GRADIENT REGULARITY FOR ELLIPTIC EQUATIONS IN THE HEISENBERG GROUP

Abstract. We give dimension-free regularity conditions for a class of possibly degenerate sub-elliptic equations in the Heisenberg group exhibiting super-quadratic growth in the horizontal gradient; this solves an issue raised in [40], where only dimension dependent bounds for the growth exponent are given. We also obtain explicit a priori local regularity estimates, and cover the case of the h...

متن کامل

Error Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations

We study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The control is the trace of the state on the boundary of the domain, which is assumed to be a convex, polygonal, open set in R. Piecewise linear finite elements are used to approximate the control as well as the state...

متن کامل

Convexity Estimates for Nonlinear Elliptic Equations and Application to Free Boundary Problems Estimations De Convexité Pour Des Équations Non-linéaires Elliptiques Et Application À Des Problèmes De Frontière Libre

– We prove the convexity of the set which is delimited by the free boundary corresponding to a quasi-linear elliptic equation in a 2-dimensional convex domain. The method relies on the study of the curvature of the level lines at the points which realize the maximum of the normal derivative at a given level, for analytic solutions of fully nonlinear elliptic equations. The method also provides ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014